

PtCu@TiO, nanoparticles by low pressure plasma

Emile HAYE^{1*}, Loris CHAVEE¹, Amine ACHOUR², Jean-François COLOMER³, Laurent HOUSSIAU², Stéphanie BRUYERE⁴, Alexandre NOMINE⁴, Stéphane LUCAS¹

*: emile.haye@unamur.be

- ¹ Laboratoire d'Analyse par Réactions Nucléaires (LARN), Namur Institute of Structured Matter (NISM) University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium
- ² Laboratoire Interdisciplinaire de Spectroscopie Electronique (LISE), Namur Institute of Structured Matter (NISM), University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium
- ³ Service de Microscopie Electronique, University of Namur, 5000 Namur, Belgium
- ⁴ Université de Lorraine, IJL, F-54000 Nancy, France

ABSTRACT

Pt based nanoparticles are widely used for application in catalysis. While most of the synthesis are based on chemical processes, involving extensive use of solvents and energy, we present here a new and original method based on the low pressure plasma process. The synthesis of Pt, Cu, and Pt_xCu_v nanoparticles (NPs) anchored onto an inorganic nanopowder substrate (TiO₂), using an Ar/NH₃ radiofrequency plasma discharge is demonstated, using solid organometallics (Cu and Pt acetylacetonate), mixed with TiO2 as starting materials. Both chemical and crystallographic characterizations confirm the formation of metastable alloyed Pt-Cu nanoparticles. The difference of Pt and Cu concentrations in NPs measured with a volume technique (X-ray diffraction) and a surface technique (X-ray photoelectron spectroscopy) suggests a Pt concentration gradient within NPs attributed to a difference in organometallics degradation kinetics.

EXPERIMENTAL METHODS

Simultaneous plasma degradation of Pt(acac), and Cu(acac), mixed with TiO₂ nanopowder

Figure 1: Sketch of the experimental synthesis nanopowder RF plasma Pt_xCu_v@TiO₂ nanoparticles

Raw materials:

Pt(acac)₂, SigmaAldrich 99.99% Cu(acac)₃, SigmaAldrich 97% TiO₂ nanopowder 100nm

Plasma discharge: RF 13.56MHz

100W 2.5 mTorr (0.33 Pa) 4 sccm NH₃ 5 sccm

60min

XPS ANALYSIS Cu(acac)₂ O 1s (g) Cu@TiO2 Cu 2p Pt 4f 965 955 945 935 925 85 80 75 70 65 540 536 532 528 410 406 402 398 394 Binding energy (eV) Binding energy (eV) Binding energy (eV) Binding energy (eV)

Native oxide formation on Cu@TiO₂ sample (visible on O 1s and Cu 2p signal) Almost no nitrogen reported (below 3%) even with the use of NH₃ NPs are alloyed, with a Pt concentration that is below the initial Pt concentration

(k)

(I)

(a.u.)

Inte

Concentration derived from XPS (3 nm)

STRUCTAL

PROPERTIES

	at% Pt	at% Cu
PtCu@TiO ₂ 75/25	23.6	76.4
PtCu@TiO ₂ 50/50	13.1	86.9
PtCu@TiO ₂ 25/75	3.8	96.2

PtCu@TiO₂ 25/75

PtCu@TiO₂ 50/50

 TiO_2

2θ (°)

PtCu@TiO₂ 75/2

Excess of Cu Pt is below Cu!

Pt(acac)₂

60

Cu@TiO₂

PtCu@TiO₂ 25/75

PtCu@TiO₂ 50/50

PtCu@TiO₂ 75/25

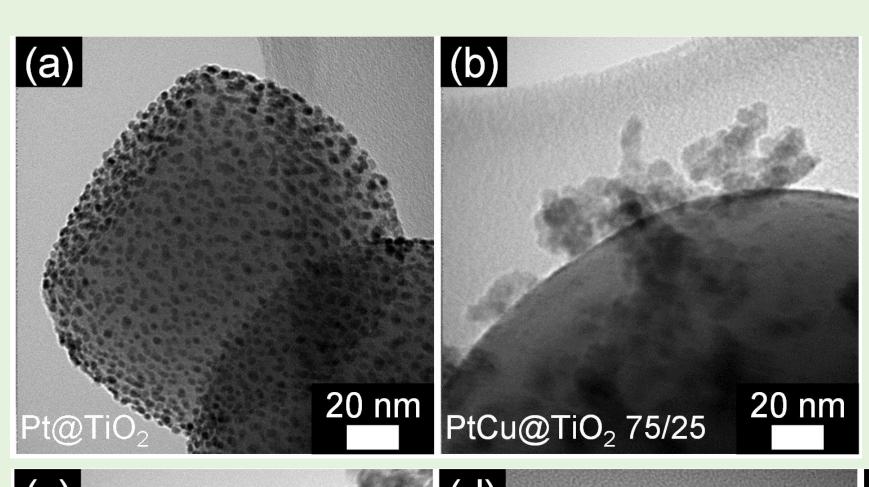
Pt@TiO₂

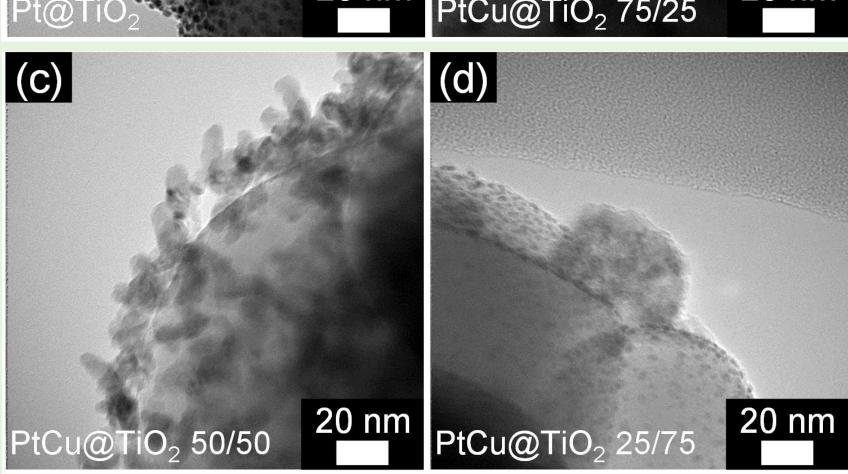
Five Pt_xCu_y@TiO₂ conditions:

x		,		
	wt% Pt	wt% Cu	Estimated	concentration
			at% Pt	at%Cu
Pt@TiO ₂	100	0	100	0
PtCu@TiO ₂ 75/25	75	25	49.4	50.6
PtCu@TiO ₂ 50/50		50	24.6	75.4
PtCu@TiO ₂ 25/75	25	75	9.8	90.2
Cu@TiO ₂	0	100	0	100

RF generator

Characterizations:


Ar/NH₃


XPS (250x250µm, Thermo Kalpha TEM (Tecnai 20 and ARM 200) XRD (X'pert Pro, $\theta/2\theta$, Cu Ka)

Pumping system

TEM OBSERVATIONS

Nanoparticles of 5-15 nm decorate the surface of bigger TiO₂ nanoparticles:

(e)

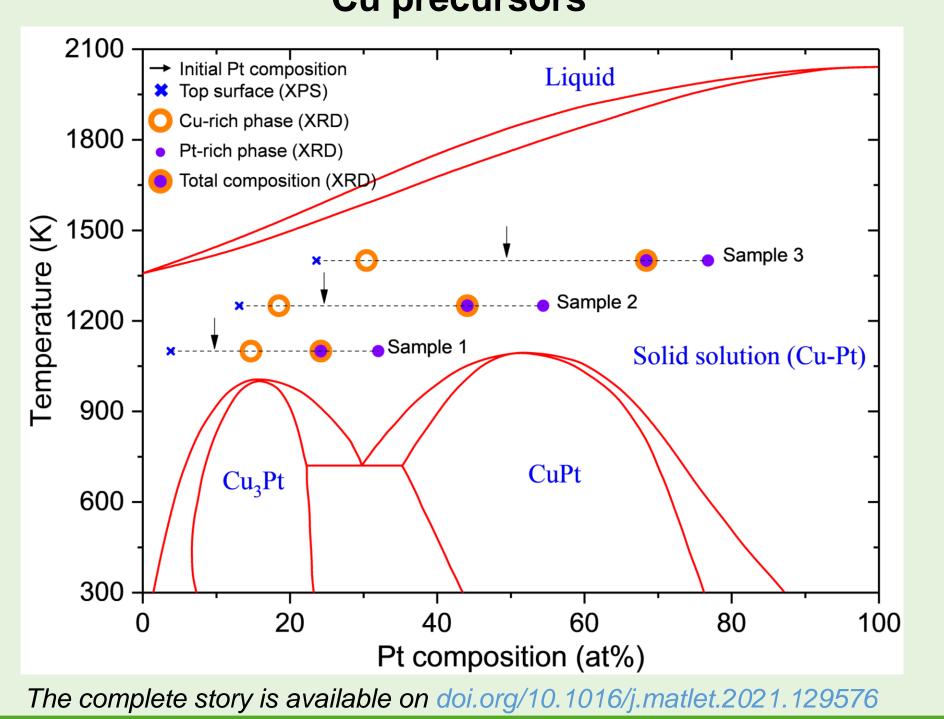
20 nm

Figure 2: TEM observation of $Pt_xCu_v@TiO_2$ nanoparticles

NO DISTINCTION BETWEEN Pt and Cu, suggesting alloy formation

Evolution of the morphology:

small and well defined nanoparticles (Fig 2.a) Pure Pt: Addition of copper: bigger nanoparticles (Fig 2.b, c & d)


tufted morphology (Fig 2.e) Pure Cu:

CONCLUSION

Successful dry synthesis of Pt, Cu, and Pt_xCu_v nanoparticles anchored onto TiO₂ nanopowder

Pt-Cu alloying formation, demonstrated by XRD analysis

Pt concentration gradient within nanoparticles is suggested due to different degradation kinetics of Pt and **Cu precursors**

Main diffraction peak between (111) of cubic Pt and (111) of cubic Cu

Broadening of peak due to small cristallites (4-14 nm)

Expected crystallographic from phase diagram:

Cu₃Pt 25/75 50/50 Cu₃Pt + CuPt 75/25 CuPt

Experimental results:

One or two phase, with peak shifting, suggesting PtCu solid solution, whose composition is derived from Vegard law:

	at% Pt	at% Cu
PtCu@TiO ₂ 75/25	67.8	33.2
PtCu@TiO ₂ 50/50		58.2
PtCu@TiO ₂ 25/75	21.7	78.3

The divergence between XPS – probing the first 3 nm – and XRD – probing the entire NPs volumes – suggests heterogeneity in the Pt concentration within NPs

2θ (°)

In accordance with stability higher stability of Cu(acac)₂ (Tm = 284°C) compared to Pt(acac)₂ (Tm = 249°C)