Cryo-ALE of Si based on SF₆ Physisorption Jack Nos¹, Gaëlle Antoun¹, Thomas Tillocher¹, Philippe Lefaucheux¹, J. Faguet², K. Maekawa³, Rémi Dussart¹ ¹GREMI, Orléans University-CNRS, 14 Rue d'Issoudun BP 6744, 45067 Orléans, France ²Tokyo Electron America, Inc., 2400 Grove Blvd., Austin, Texas 78741, USA ³TEL Technology Center, America, LLC, NanoFab 300 South 255 Fuller Rd., Suite 214, Albany, NY, USA ### **Introduction:** <u>Cryo-ALE:</u> Atomic Layer Etching process performed at cryogenic temperatures (-70°C to -120°C) Previous ($C_4F_8 + Ar$) cryo-ALE research campaign on SiO₂: Study of C_4F_8 physisorption - → Obtention of a self-limiting etching regime at T = -120°C (≈ 1 nm/cycle) - \rightarrow No particular etching selectivity of SiO₂ over Si or Si₃N₄ #### **Objectives:** <u>Cryo-ALE process optimization:</u> Comparison of etching properties obtained with SF_6 and C_4F_8 physisorptions at similar process conditions Study of SF_6 physisorption: Study of plasma-surface interactions during cryo-ALE processes based on SF_6 physisorption #### At low pressures (1 to 3 Pa): SF₆ vapor pressure equilibrium (\simeq -150°C) $^{\circ}$ C₄F₈ vapor pressure equilibrium (\simeq -130°C) Figure 1:Vapor pressure in relation to temperature for C₄F₈ and SF₆ 1000000 100000 100000 100000 100000 100000 100000 SF₆ SF Temperature (°C) ### **Experimental equipment:** **Etching equipment**: Oxford Plasma Pro 100 Cobra (ICP reactor) #### **Characterization tools:** Ellipsometry: in-situ Horiba Jobin Yvon ellipsometer → Chemical composition and thickness of the etched substrate **Samples:** Use of p-Si, SiO₂ and Si₃N₄ coupons (2x2 cm) glued on a 4" or 6" SiO₂ wafer (thermal glue) - 1: Silicon nitride (Si₃N₄) - 2: Polycrystalline silicon (p-Si) Figure 2: $(SF_6 + Ar)$ cryo-ALE of 3: Silicon dioxide (SiO₂) SiO₂ Si_3N_4 #### **Experimental Results:** #### (SF₆ + Ar) cryo-ALE process parameters: - 1) <u>SF₆ Physisorption:</u> 10 s; 3 Pa; - SF₆ (50 sccm) Gas-ring injection - 2) 1st Purge (Ar gas): 15 s; 3,4 Pa; - Ar (100 sccm) Source injection - 3) <u>Ar Etching:</u> 120 s; 3,4 Pa; 400 W_S; 0 W_B; - Ar (100 sccm) Source injection - 4) 2nd Purge (Pumping): 15 s; 0 Pa Euched Thickness (nm) -2 -4 -4 -10 -10 -12 -12 -10 -12 -10 -12 -14 SiO₂ p-Si Si₃N₄ -14 1000 Time (s) 2000 1,1 ## Conclusion and perspectives: → Observation of a quasi-ALE etching regime at T=-120°C for p-Si, SiO₂ and Si₃N₄ (≈ 6 monolayers of Si / cycle); The increased surface residence time of SF₆ at -120°C allows etching during the Ar etching step; No etching selectivity between Si, SiO₂ and Si₃N₄ -16 \rightarrow Further characterizations (Plasma probes, XPS spectroscopy, Optical spectroscopy and Mass spectrometry) to better understand plasma-surface interactions during SF₆ physisorption at cryogenic temperatures in order to optimize the process. #### **Acknowledgements:** The authors would like to thank S. Tahara for all the helpful discussions. This research project is supported by the CERTeM 2020 platform, which provides most of the equipment and funded by the European Union (FEDER fund) as well as the French National Research Agency (ANR PSICRYO fund).