

Reaction of neutral species in homogeneous phase by **Molecular Dynamics simulation of Ar/CH**₄

G. C. Otakandza Kandjani¹, P. Brault¹, M. Mikikian¹, G. Tétard², A. Michau², K. Hassouni², J. Mougenot²

¹GREMI UMR7344 CNRS/Université d'Orléans, 45067 Orléans, France

²LSPM UPR3407 CNRS/Université Sorbonne Paris Nord, 93430 Villetaneuse, France * alenn.otakandza@etu.univ-orleans.fr

Abstract

Complex Non-equilibrium Hydro-Carbon Plasmas (CNHCP) are weakly ionized gases containing electrons, neutral and charged molecular species, large clusters and, possibly, solid particles. They are nowadays a major tool for the elaboration of advanced carbon materials and nanostructures and several key-applications – drugs sensors, electronic devices, optoelectronics, energy storage, etc. Reactive Molecular Dynamics (MD) is used to study the homogeneous phase by placing all neutral species in a box to determine the distribution in the carbon clusters, the evolution of each species with time, and the bonding order between carbon atoms.

Computational details

LAMMPS is used for molecular dynamics simulation

Interaction potential

Reference conditions			Neutral	Molar		
Temperature	300K		majority	fractions		
Drocouro	70 Do		H ₂	0.54		
Flessule	70 Fa		CH4	0.23		
Vrf	100V		C_2H_4	0.09		
Frequency	13.56 MHz		C ₂ H	0.05		
Probability of secondary electrons	0.01		C_2H_2	0.05		
% Argon	96		СП ₃	0.04		
% Methane	4					
\sim D = 2.54 cm $=$						
The initial Ar/CH4 plasma	54 CIII					
is determined using a 1D p	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					

- The details of the construction of the simulation box can be found in ref.[3]
- the number of each species in the table

Number

630

243

144

122

104

Species

 H_2

 CH_4

 C_2H_4

 C_2H

 C_2H_2

 CH_3

MD Consists in solving Newton's equations of motion for a set of N atoms, molecules, particles, etc. : $m_i \frac{d^2 \vec{r}}{dt^2} = \sum_{i \neq j} \vec{F}_{ij} = -\sum_{i \neq j} \vec{\nabla V}_{ij}$ The interaction potentials V_{ii} must be known with sufficient accuracy: For our problem, it is necessary to consider the reactivity the interactions between the atoms of our molecules were modeled by the REBO (Reactive Empirical Bond Order) potential

$$\boldsymbol{U_{ij}} = \boldsymbol{U}(\boldsymbol{R_{ij}}) = \boldsymbol{U}_r(\boldsymbol{R_{ij}}) - \boldsymbol{b_{ij}}\boldsymbol{U}_A(\boldsymbol{R_{ij}})$$

The species CH₄, C₂H₂, C₂H₄, are the most present. New species are formed such as cyclic hydrocarbons (in very small amounts)

The H₂ is almost constant, the C₂H has reacted completely. The presence of CH₃ decreases with time. The other molecules C₂H₂, CH₄ and C₂H4, There is no noticeable variation except for the drop to 1ns corresponding to the first reactions.

- The determination of the percentage of bond order between pairs of carbon atoms is determined by the Radial Distribution Function (RDF) integral approximation.
- The radial distribution function g(r) describes the probability to find a particle (an atom or molecule) j at a distance r from another particle i.

$$g(r_{ij}) = \frac{V}{N_i N_j} \left\langle \sum_{i=1}^{N_i} \sum_{j=1}^{N_j} \delta(r - ||r_{ij}||) \right\rangle$$

Bond order	300K	400K	500K	1000K
Triple (%)	36	24	20	34
Double (%)	57	72	73	60
Single (%)	7	4	7	6

hydrocarbon clusters formed

Conclusions

- Formation of new carbon clusters in the gas phase at long simulation time
- The mass spectrum allowed to identify the molecules in strong presence (CH₄, C₂H₄), When the temperature increases, other species are formed.
- The evolution of the initial species as a function of time highlighted the very weak variation of H₂, the complete reaction of C₂H, the decrease of CH₃ and the there is no well perceptible variation of C₂H₂, CH₄, C₂H₄
- Increasing the temperature, increases the stability of the double bond order between pairs of carbon atoms up to 500K before dropping to 1000K.

Acknowledgements

This work has been supported by the National Scholarship Agency of Gabon (ANBG) and the French National Research Agency (ANR): project MONA (ANR-18-CE30-0016).

[1] P. Brault, « Multiscale Molecular Dynamics Simulation of Plasma Processing: Application to Plasma Sputtering », Front. Phys., vol. 6, p. 59, juin 2018, doi: 10.3389/fphy.2018.00059. [2] L. Schwaederlé, P. Brault, C. Rond, et A. Gicquel, « Molecular Dynamics Calculations of CH₃ Sticking Coefficient onto Diamond Surfaces », Plasma Proc. Polym., vol. 12, no 8, p. 764 770, 2015, doi: 10.1002/ppap.201400223. [3] K. De Bleecker, A. Bogaerts, and W. Goedheer, "Detailed modeling of hydrocarbon nanoparticle nucleation in acetylene discharges," Phys. Rev. E, vol. 73, no. 2, p. 026405, Feb. 2006, doi: 10.1103/PhysRevE.73.026405.

PLATHINIUM 2021: Plasma Thin film International Union Meeting, 13-17 September 2021 – Virtual Meeting