

Optimization of the anti-reflective coating (SiCxNyH) / Silicon interface by the nitridation process to improve silicon photovoltaic cell performance

^{1,2}Hiba Beji , ¹Valentin Develay, ¹Guillaume Monier, ¹Luc Bideux, ¹Philip Hoggan, ²Angelique Bousquet, ²Eric Tomasella, ¹Christine Robert-Goumet

¹Université Clermont Auvergne, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France

²Université Clermont Auvergne, CNRS, Institut de Chimie de Clermont -Ferrand, F-63000 Clermont-Ferrand

Thin dielectric films are nowadays widely used for photovoltaic (PV) devices, for which both passivation of surfaces and anti-reflective properties are sought. Silicon wafer solar cells continue to be the leading photovoltaic technology. However, the interface between the Si substrate and its antireflective films play a key role in the yield of PV cells. A N₂ nitridation plasma process is developed to limit dangling bond formation and therefore to reduce the interface state density.

Nitridation process

The Si(100) surfaces, as-received and cleaned are nitrided by N₂ GDS plasma sources and monitored by Angle Resolved X-ray Photoelectron Spectroscopy (AR-XPS) with take-off angle from 0 $^{\circ}$ to 60 $^{\circ}$).

Experimental parameters : Nitridation temperatures (RT and 500°C) and time (1h-6h) were used to obtain the thin created nitride film.

Glow Discharge Source (GDS) parameters: Majority of N⁺ species Power : 5 W / I_{sample} = 2 mA $P_{N2}: 10^{-4} \text{ mbar}$

1. Effect of nitridation temperature : RT and 500° C

Peak			O(1s)	N(1s)			
	Peak 1	Peak 2	Peak 3	Peak 4		Peak A	Peak B
Chemical bond	Si-Si	SiN _y (Y < 4/3) and SiO _x	Si ₃ N ₄ and SiO _x N _y (X+Y≤3)	SiO _x N _y with dangling bonds ?	O-Si O-N	N-Si(ON ₂) N-Si(O ₂ N)	N-O
Binding Energy (eV) FWHM	99.6[1] 1	100.8, [1] 1.45	102 [1] 1.45	102.8 1.45	532.6 [2] [1.8-2]	398.11[3] 1.6	399.45 1.6

Cleaned Si(100), @RT, nitridation time:1h

Constraints : Si-rich interfacial layer a1 < a2 Layer 2 corresponds to the contribution of peak 2 d² a2 ≤ 0,66 $(Si_2O: a2=2/3 = 0,66 and/or Si_3N_2: a2=3/5 = 0,6 [1])$

. 1	
	$Si_{a1}O_{b1}N_{c1}$
	(Peak 3+4)
	Si _{a2} O _{b2} N _{c2} (Peak 2)
•	Si

Determination of the stoichiometry (a, b, c) and thickness (d) of the two Si_aO_bN_c layers

4. Effect of nitridation time

Time of nitridation (h)

10000

d1+d2d1 d2

- No stochiometry changes versus nitridation time [1h-6h]
 - 0.45<a1<0.50, b1=0, 0.45<c1<0.50
 - 0.50<a2<0.60, 0.30<b2<0.50, c2<0.10
- Nitridation process saturation after 6h : Nitride layer thickness less than 9 nm
- Layer 2 : very thin interfacial layer (<2 nm)</p>
- Layer 1 : d1 increases faster than d2

Effect of a post oxidation This aims to study the chemical behavior of the nitrided layer between the two processes : the silicon nitridation and the anti-reflective coating growth Cleaned Si(100) @500° C, nitridation time 1h N/Si2P 1,6 1,4 1.5 . 1,2 ā 1,0 O/Si2P 0.8 9,0 beak SdX 0,4 0,2 0,0 25 oxidation time (h) Increase of oxygen during the first hour of air exposure The Nitrogen amount is constant

- oxygen: No destruction of Si-N bonds
 - b₁ in the range of [0.05-0.1] = surface
- Little increase of the nitride layer with air exposure (oxydation)

Si(2P)

8000

<u>1h</u>

N/O	11.90	7.54
-----	-------	------

Nitrogen diffusion in Si matrix and creation of thin nitride layer (SiON) (<9 nm) with residual oxygen reduced by nitridation temperature (500°C) tending to create Si dangling bonds

Outlooks

- What is the contribution of this ultra thin nitride layer ?
- Electrical measurements coupled with physico-chemical study will be considered in order to evaluate the interfacial state density and improve the silicon photovoltaic cell performance.

References :

[1] Journal of Applied Physics 97 (2005) 073518 [2] Thermo Scientific X-ray Photoelectron Spectroscopy XPS [3] Surface and Coatings Technology 174 –175 (2003) 370–374

Financial support :

This work was sponsored by a public grant overseen by the French National Research Agency as part of the "Investissements d'Avenir" through the IMobS³ Laboratory of Excellence (ANR-10-LABX-0016) and the IDEX-ISITE initiative CAP 20-25 (ANR-16-IDEX-0001)."

Si(2P)

10000

and 1h of air exposition : oxydation of dangling bonds

<u> 0min</u>

Peak 4 corresponding to SiON with dangling bonds

Air exposure leads to the passivation of the defects (filling Si dangling bonds)

<u>10min</u>

