

Microstructure and properties control in sputter-deposited Zr-Cu thin film metallic glasses

A. Borroto¹, S. Bruyère¹, D. Pilloud¹, D. Horwat¹, J.F. Pierson¹

¹ Université de Lorraine, CNRS, IJL, F-54000 Nancy, France

Corresponding author: alejandro.borroto@univ-lorraine.fr

Introduction

- > Metallic glasses (MGs) have emerged as a new class of materials with remarkable properties compared with their crystalline counterpart.
- Using physical vapor deposition methods such as sputtering, MGs can be prepared in the form of thin film metallic glasses (TFMGs).
 - The microstructural control inherent to the sputtering process can be exploited to tailor the properties of TFMGs.
- > Here, we report on the influence that the energy of the sputtered atoms

Deposition process

Magnetron co-sputtering

- > Vacuum limit in the chamber: $10^{-5} 10^{-7}$ Pa
- Substrate: (100) silicon single crystal substrates
- > Films deposited without external heating
- > Working argon pressures

- 0.25 Pa

- 0.5 Pa

Increasing pressure

arriving at the substrate (controlled here through the deposition pressure) has on the structure, microstructure and properties of the deposited films.

Zr-Cu alloys are used as a model system and studied over a wide range of compositions.

Microstructural tuning

Conclusion

- \checkmark Increasing the deposition pressure, a composition-dependent transition from a denser to a columnar microstructure occurs.
- ✓ This microstructural transition directly affects the electrical and optical properties of the deposited TFMGs.
- \checkmark There is a threshold in the deposition pressure below which the resistivity of the films remains constant.
- \checkmark The optical reflectance scales linearly with the square root of the electrical resistivity, according to the classical reflection theory.

REFERENCES

[1] Z. Altounian et al., Journal of Applied Physics 53, 4755 (1982) [2] T. T. Hu et al., Appl. Phys. Lett. 101, 011902 (2012) [3] S. Canulescu et al., Appl. Phys. Lett. 108, 141909 (2016)

ACKNOWLEDGMENT

- This work was supported by the ANR project MEGALIT (ANR-18-CE08-0018) of the French Agence Nationale de la Recherche.
- The Centre de Compétences Davm of the Institut Jean Lamour is acknowledged for its technical support.