nano4energy Institute Materials www.materials.imdea.org

Optimization of AITiBN coatings deposited by HiPIMS

A. Mendez^{1,2,3}; J. Santiago¹; I. Fernández-Martínez¹; A. Wennberg¹; M.A. Monclús²; and J.M. Molina-Aldareguía²

¹ E.T.S. de Ingenieros de Caminos, Universidad Politécnica de Madrid, Campus Ciudad Universitaria, c/Prof. Aranguren, 3, 28040 Madrid, Spain; ²Nano4Energy SL, c/José Gutiérrez Abascal, 2, 28006 Madrid, Spain;

³ IMDEA Materials Institute, c/Eric Kandel 2, 28906 Getafe, Spain;

MOTIVATION

- Hard nitride (Ti, Al)N-based coatings deposited by magnetron sputtering (MS) suffer from limited thermal stability and fracture toughness.
- > HiPIMS method offer higher energetic deposition conditions.

COATINGS DEPOSITION SETUP AND COMPOSITIONS

To pumping system	pumping ystem gauge		Targets	Power	Composition $(at.\%)$				x	Thickness	Deposition Rate
1	Gas inlet				Al	Ti	В	Ν		(μm)	$(\mu m/h)$
	<u> </u>	AlTiN-1	$Al_{50}Ti_{50} + Ti$	3kW and 0.5 kW	24.40	23.80		51.73	0.51	2.45	0.98
Heaters		AlTiN-2	$Al_{50}Ti_{50}$	3kW	25.79	21.85		52.27	0.54	1.99	0.80
		AlTiN-3	$\mathrm{Al}_{50}\mathrm{Ti}_{50} + \mathrm{Al}$	$3 \mathrm{kW}$ and $0.25 \mathrm{kW}$	26.79	18.67		54.55	0.59	1.59	0.64
\bigcirc		AlTiN-4	$\mathrm{Al}_{50}\mathrm{Ti}_{50} + \mathrm{Al}$	$3 \mathrm{kW}$ and $0.5 \mathrm{kW}$	29.36	14.98		55.39	0.66	1.69	0.68
		AlTiN-5	$\mathrm{Al}_{50}\mathrm{Ti}_{50}+\mathrm{Al}$	$3 \mathrm{kW}$ and $2.0 \mathrm{kW}$	34.61	9.80		55.25	0.78	2.75	1.1
Gas		AlTiBN-1	$\mathrm{Al}_{55}\mathrm{Ti}_{35}\mathrm{B}_{10}+\mathrm{Ti}$	3 kW and $2.0 kW$	25.35	20.12	0.85	53.43	0.56	2.66	1.33
	Anode	AlTiBN-2	$\mathrm{Al}_{55}\mathrm{Ti}_{35}\mathrm{B}_{10}+\mathrm{Ti}$	$3 \mathrm{kW}$ and $1.5 \mathrm{kW}$	26.69	19.35	0.91	52.35	0.58	2.01	1.01
		AlTiBN-3	$\mathrm{Al}_{55}\mathrm{Ti}_{35}\mathrm{B}_{10}+\mathrm{Ti}$	$3 \mathrm{kW}$ and $1.0 \mathrm{kW}$	28.44	17.50	0.97	52.58	0.62	1.80	0.90
	tor	AlTiBN-4	$\mathrm{Al}_{55}\mathrm{Ti}_{35}\mathrm{B}_{10}+\mathrm{Ti}$	3kW and 0.5 kW	30.36	15.68	1.10	52.55	0.66	1.67	0.84
		AlTiBN-5	$\mathrm{Al}_{55}\mathrm{Ti}_{35}\mathrm{B}_{10}$	3kW	31.31	14.18	1.19	53.31	0.69	1.59	0.80
		AlTiBN DC	$\mathrm{Al}_{55}\mathrm{Ti}_{35}\mathrm{B}_{10}+\mathrm{Ti}$	3kW and 1.0 kW	27.87	17.67	3.68	50.01	0.61	3.51	1.76

Deposition procedure and composition results extracted from GDOES analysis.

- > AITIBN and AITIN coatings were deposited by HiPIMS to study the effect of AI content and B doping. AITiBN also deposited by DCMS for comparison with HiPIMS.
- $> Al_xTi_{1-x}(B)N$ deposited with x ratios between 0.50 and 0.80.

<u>Aim</u>: Produce harder and thougher AITiBN coatings suitable for high temperature applications.

Industrial-scale deposition setup.

PROPERTIES XRD TEM TiN (c) Fe (c) Al_xTi_{1-x}BN Coatings up to x = 0.6Dense columnar structure TiN (c) Fe (c) Al_xTi_{1-x}N Al_{0.59}Ti_{0.41}N present a predominant fccof ~20 nm wide grains Ĵ 0.66 cubic structure. in oriented the growth ratio, Al/(Al + N 0.62 direction. B-doping, in combination × 0.54 ₩ 0.58 HiPIMS with energetic Lattice planes extend bombardment, promotes continuously within the ³⁵40 Diffraction Angle 2θ [°] Diffraction Angle 20 [°] orientation (200)over columnar grains and are TiN (c) _____TiN (c) Fe (c) Al_{0.61}Ti_{0.39}BN DC (111). interrupted by the grain boundary showing high \succ At high x ratios and lowdegree of crystallinity. Cross-sectional BF-TEM HR STEM bombardment 2 nm energy 100 nm

 \rightarrow Higher H/E and H³/E² ratios for Al_xTi_{1-x}BN suggest \uparrow fracture toughness.

 $> AI_{0.62}B_{0.38}BN$ offers improved thermal stability (up to 1100 °C).

FURTHER INFORMATION

> A. Mendez et al. Surface & Coatings Technology 422 (2021) 127513

https://doi.org/10.1016/j.surfcoat.2021.127513

 $> AI_xTi_{1-x}(B)N$ with x ≈ 0.6 offer the highest hardness.

Formation onset of detrimental h-AIN delayed from 850 °C for Al_{0.59}Ti_{0.41}N to 1100 °C for Al_{0.62}B_{0.38}BN.

Superior hot hardness for Al_{0.62}B_{0.38}BN up to 750 °C \Rightarrow better performance for high temperature applications.

ACKNOWLEDGEMENTS

This investigation was supported by the Comunidad de Madrid under the Industrial Doctorate program (IND2018/IND-9668).

la excelencia como clave tecnológica excellence as our technological key

the

more