Laboratoire Plasma et Conversion d'Energie

Effect of the operating parameters on aerosol-assisted atmospheric pressure plasma thin film deposition

R. Magnan, R. Clergereaux, P. Raynaud and N. Naudé

romain.magnan@laplace.univ-tlse.fr

Context

In this study, a non-thermal atmospheric pressure plasma torch from AcXys Plasma Technologies is coupled with an aerosol injection

This process offers an easy and robust solution to generate low temperature post-discharge in air or nitrogen

It is suitable for surface activation and for thin film deposition on flat or 3D complex substrates for in-line production

The influence of process parameters (carrier gas and precursor flow rate) on the thin film properties are investigated

Influence of precursor flow rate (HMDS)

Photo of the aerosol at the nebulizer exit

The thin film thickness and roughness are faintly affected by $\Phi_{
m HMDS}$

Hypothesis:

- Mass balance ↓ (reactivity or adhesive problems ?)
- Plasma/droplet interaction

Elipsometry fit with 2 phases (SiO₂ + void)

Fit optimum for Φ_{HMDS} = 500 µL/min \rightarrow SiO₂-like thin film

Influence of carrier gas flow rate (N2)

The thin film thickness and roughness decrease with Φ_{HMDS}

Hypothesis:

- Densification of the thin film
- Modification of the aerosol density and/or higher precursor dissociation at the center of the plasma post discharge

Elipsometry fit with 2 phases (SiO₂ + void)

Increasing Φ_{N_2} \rightarrow tend toward SiO₂-like thin film

Conclusion

- ► Elaboration of SiO_xC_yH_z thin films from aerosol-assisted atmospheric pressure plasma
- ➤ **High deposition rate** (from ≈80 to 200 nm/passing at 100mm/s)
- > Increasing the precursor flow rate (HMDS):
 - Increase the amount of the droplets precursor but not their size
 - Faintly modified thin film properties
- \triangleright Increasing the carrier gas flow rate (N₂):
 - Densify the thin film (↓ thickness and ↓ roughness)
 - Modify the film chemistry (SiO_xC_yH_z → SiO₂-like)

This set-up open up news perspective for various precursors

