Ritik Tomar*, Nirmal Kumar, Alan Maslani, Vineet Singh Sikarwar, Michal Jeremias, Michael Pohorely Department of Power Engineering, University of Chemical and Technology, Prague, Czech Republic * ritik.tomar@unicre.cz

UNIVERSITY OF CHEMISTRY AND TECHNOLOGY PRAGUE

Applications

≻When such applications require water/gas hybrid plasma torches to be operated at temperatures above 2500 K, significant

Objective

- Remote monitoring of NOx emissions from the external plasma jet of a water/gas hybrid plasma torch at different power levels (400,500A) were investigated.

Plasma Torches

Introduction

Over the years it has been established that an arc plasma jet, a beam of huge concentrated thermal energy at very high temperature consisting of electrons, ions and neutrals, can meet the high temperature requirement of many high temperature based processes like

- Plasma spraying
- Spheroidization
- Plasma Cutting
- Pyrolytic treatment of waste materials

Devices for producing such plasma jets are called Plasma Torches.

- of quantities nitrogen (NOx) oxides are produced.
- ►NOx production in heated air is of interest both in industrial applications and environmental studies.
- >Due to increasingly strict emission regulations and standards set by European Commission, researchers are developing new strategies and technologies to reduce pollutants from any combustion system or process.
- \checkmark NOx concentrations at each point in the plasma jet were analyzed by a calibrated thermochemical NOx analyzer (Horiba PG-300).
- Together with additional thermochemical and CFD simulations, the obtained results will lead to a number of conclusions concerning the control of NOx emissions.
- Results can be used to ensure that the final NOx gases released into the atmosphere remain within regulatory limits.

NOx Mechanisms

Thermal NOx is formed by the high-temperature reaction of nitrogen with oxygen, by the well-known zeldovich mechanism:

 $N_2 + O_2 \rightarrow NO, NO_2$

It increases exponentially with temperature above about 2,000°F (1,100°C).

Prompt NOx is formed by the relatively fast reaction between

Influence of temperature on NOx formation

Water argon Plasma Torch

- Plasma is formed by electric arc from water steam and gas (argon).
- Arc stabilization is characterized by extremely high plasma enthalpy, temperature, and very low plasma flow rate.
- Argon plasma flows through the nozzle to the second part of the arc chamber, where an arc column is surrounded by a water vortex.
- Steam evaporation is the main mechanism of plasma gas production.

Analyzer

(Horiba-PG 300)

PC

nitrogen, oxygen, and hydrocarbon radicals:

 $CH_4 + O_2 + N_2 \rightarrow NO, NO_2, CO_2, H_2O$, trace species

It is generally an important mechanism in lower- temperature combustion processes that's why less important than Thermal NOx.

Fuel NOx is formed by the direct oxidation of organo-nitrogen compounds contained in the fuel.

 $R_XN + O_2 \rightarrow NO, NO_2, CO_2, H_2O$, trace species

It is not a concern for high-quality gaseous fuels like natural gas or propane, which normally have no organically-bound nitrogen.

Source:TFTEI

• An anode is created by a rotating copper disc with internal water cooling.

Methodology

Remote monitoring of NOx carried out using a calibrated thermo- chemical NOx sensor (Horiba PG-300).

Using precise linear movement system, axial and radial movement of the torch were carried out from a well-defined zone of plasma jet.

Typical temperature and NOx distribution field inside the plasma jet plus the temperature along the plume were obtained through CFD simulation and thermo-couple respectively.

The experiments were carried out for two power levels i.e. 400,500A.

Argon gas flow rate was 12 slpm.

Discussion

 \checkmark The rate of NOx formation generally increases significantly above 2,000°F flame temperature. \checkmark To break the strong $N \equiv N$ molecules, a high temperature is required.

 \checkmark As long as N₂ and O₂ are available in the combustion air and the temperature is high enough, NO is produced.

 \checkmark The total amount of NOx is positively correlated with the flame temperature and the retention time.

 \checkmark Therefore, we get less concentration of NOx in the

NOx concentration Through CFD

Fig: Experimental set up for measuring NOx concentration

X- Axial direction

Y- Radial direction

Results: Data and Discussion

Temperature along the Plasma Plume

NOx Concentration for 400A

NOx Concentration for 500A

flame front(near the nozzle) and much higher in the end, where plasma starts expanding.

Conclusion

- NOx is a regulated pollutant formed in nearly all industrial combustion processes.
- Controlling and minimizing pollutant emissions is critical for meeting air quality regulations.
- It can generally be easily controlled using a variety of proven strategies.
- Suitable instrumentation, such as gas analysers for measuring O₂ and NOx in the exhaust products, is recommended to ensure the equipment is operating according to specifications.
- Our experiment will help plasma processors continue to be environmentally friendly and within compliance of their air permits.
- The results will be helpful in designing off-gas process system so that the final gas, released to the atmosphere, remains well within the acceptable limit.

Acknowledgement:

This research was supported by financial support from specific university research (MSMT No 21-SVV/2019) and ORLEN UniCRE.