

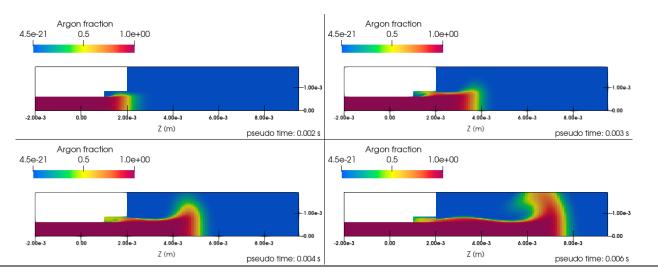
#PLATH00025 PROC / Process control (including plasma diagnostics, plasma modelling)

Adaptation of SPARK to atmospheric-pressure micro-plasma jets flow conditions

D. Gonçalves^{1,2}, J. Santos Sousa², S. Pasquiers², M. Lino Da Silva¹, L. Lemos Alves¹ ¹Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Lisbon (PT) ²Univ. Paris-Saclay, CNRS, Laboratoire de Physique des Gaz et des Plasmas, Orsay (FR)

Abstract content

This work regards the adaptation to the low temperature and low speed flow conditions observed in atmosphericpressure micro-plasma jets (APMPJs) of the Software Platform for Aerothermodynamics Radiation and Kinetics (SPARK) [1], a CFD code often used for hypersonic re-entry plasmas. Small flows require high fidelity on the calculation of dissipative processes, and low-temperature plasma chemistry requires detailed state-to-state kinetics. SPARK was adapted accordingly, facing other challenges of convergence in low-Mach conditions and the computational cost of state-to-state kinetics. A first adaptation was the inclusion of subsonic boundary conditions. Secondly, the Simple Low-dissipation AUSM solver (SLAU) [2], a low-Mach perfect-gas solver, was implemented. After validation in incompressible flow simulations, SLAU was adapted into a multi-species and multi-temperature flux solver. Inviscid, dissipative, and kinetic calculations were fully coupled with implicit time integration. Convergence was improved by including a time-step preconditioning formulated for flows with a non-equilibrium temperature for the free electrons. A reduced Argon kinetic scheme was included by applying Uniform Grouping to a state-of-the-art scheme, and run times were decreased by adopting 5th order WENO [3] reconstruction and OpenMP parallelization. The effect of the applied field was included by adding an electron energy source term. Due to the existence of streamers in our APMPJs [4], a simplified streamer model was included to improve the fidelity of this term. Benchmark simulations show a stable code, even in relatively sparse meshes, able to compute the problem in reasonable times. First tests with SLAU multispecies and multi-temperature adaptations allow for a good description of inertial effects, attributed to the low numerical dissipation during the calculation of the momentum conservation equation (see Figure 1), and flux solver adaptations prove to accelerate convergence.


Thanks/Acknowledgement

This work was partially supported by the Portuguese Foundation for Science and Technology under project UID/FIS/50010/2019 and grant PD/BD/142972/2018 (PD-F APPLAuSE).

References

B. Lopez and M. Lino da Silva, 46th AIAA Thermophysics Conference, (2016) 4025 [2] E. Shima and K.
Kitamura, AIAA Journal, 49:8 (2011) 1693-1709 [3] X.-D. Liu, S. Osher, T. Chan, J. Comput. Phys., 115 (1994) 200
K. Gazeli et al., Plasma Sources Sci. Technol., 27 (2018) 065003

Argon mass fraction in the nozzle flow.

