

#PLATH00105 NANO / Nanomaterials and nanostructured thin films

Enhanced resonance Raman scattering of spin-coated silver nanoparticles by treatment in a microwave argon plasma jet open to ambient air

L. Stafford¹, J. Trahan¹, J. Profili¹, G. Robert-Bigras¹, M. Mitronika², A. Granier², M. Richard-Plouet² ¹ Univ. Montréal (CA) ² Institut des Matériaux Jean Rouxel - Nantes (FR)

Abstract content

This work investigates the treatment of thin films made of spin-coated silver nanoparticles with dimensions in the 60-80 nm range by an open-to-air microwave argon plasma jet characterized by neutral gas temperatures of 2200 ± 200 K. Scanning Electron Microscopy reveals a consumption of small nanoparticles to produce micrometer-scale aggregates with sharp edges. Similar features with rounder edges are obtained after conventional thermal annealing. In both conditions, Auger Electron Spectroscopy and X-ray Diffraction analysis indicate an oxidation of silver nanoparticles. However, only plasma-exposed samples exhibit a rise in the surface-enhanced resonance Raman scattering (SERS) signal. By combining 58 58 μ m2 mappings of Hyperspectral Raman IMAging (RIMA) with multivariate curve resolution by log-likelihood maximization, it is shown that SERS enhancement is controlled by aggregated domains.