Corticosteroids delayed hypersensitivity: diagnostic and cross-reactivity

Marie Baeck
‘Paradoxical’ condition

Treatment of inflammatory and allergic diseases

Sometimes responsible for immediate or delayed allergic hypersensitivity reactions (IAHRs – DAHRs)
1. Diagnostic

2. Classification and cross-reactions

3. Practical guidelines
Diagnosing corticosteroids allergy: a challenge for clinicians!

Clinical signs are usually minor, with an atypical chronology

Skin-test results difficult to interpret
No response or worsening following CS treatment of a cortico-sensitive dermatitis
M. Baeck (Bruxelles)
Clinical presentation dominated by ‘classical’ side effects of CSs
‘edge effect’
8e Congrès Francophone d'Allergologie

M. Baeck (Bruxelles)
8e Congrès Francophone d’Allergologie

M. Baeck (Bruxelles)
ACD following ocular use of dexamethasone (ointment) and dexamethasone Na-phosphate (eyedrops)
ACD following inhalation of CSs (budesonide)
Generalized eruption
Indisputable value of patch testing

With **ethanol** as vehicle

Markers: Tixocortol pivalate, budesonide, hydrocortisone 17-butyrate
(detection of 92.5% of the CS-sensitized patients)

Importance of testing with the specific CSs used by the patient!

Concentration: **low!**
Readings pitfalls...

Interest of late readings, day 6 or 7, or even later

Particular effects related to CSs:

- ’Edge effect’
- Vasoconstriction
- Vasodilation
Prick or intradermal tests with late readings?

ID tests with late readings should NOT be routinely performed:

– Important risk of atrophy, particularly with CSs in suspension (Diprophan®, Kenacort®, Pulmicort®) >= solutions
Prick tests | ID tests | Patch tests

'as is'
30%
10%
1%

M. Baeck (Bruxelles)
Skin atrophy: Diprophos®‘as is’ and diluted 30%, 10%
AMBULANCE

MAXIME

M. Baeck (Bruxelles)
1. Diagnostic

2. Classification and cross-reactions

3. Practical guidelines
Many different corticosteroids: a same basic structure

Three rings of 6, and 1 ring of 5 carbon atoms

Many different molecules in order to:

– Increase potency and effectiveness
– Decrease classical side effects and allergenicity
Positive patch-test reactions occur less frequently with C_{16}-methylated or halogenated molecules.
C_{16}-methyl substitution

Previously considered as a protection against hydrolysis

Recent experimental data indicated:

- Interference with protein binding (avoidance of the formation of stable cyclic adducts with arginine)
Halogenation

Important role of stabilisation

Molecular charge difference (Wilkinson 1995, 2000)
Corticosteroid classification

Classification of CSs (according to clinical and structural characteristics):

– Coopman et al. (1989): A,B,C et D
– Matura et Goossens (2000): A,B,C,D1,D2
 (further clinical data)
<table>
<thead>
<tr>
<th>GROUPS</th>
<th>CHARACTERISTICS</th>
<th>TYPICAL MEMBERS</th>
<th>CROSS-REACTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>No substitution on the D ring except a short chain ester or a thioester on C21</td>
<td>Cortisone acetate
 Hydrocortisone
 Hydrocortisone acetate
 Hydrocortisone 21-butyrate
 Methylprednisolone acetate
 Prednisolone
 Prednisolone caproate
 Prednisone
 Tixocortol pivalate</td>
<td>D2</td>
</tr>
<tr>
<td>B</td>
<td>C16, C17 cis Ketal or diol structure
 Possibly a side chain on C21</td>
<td>Amcinonide
 Budesonide
 Desonide
 Triamcinolone
 Triamcinolone acetonide</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>C16-methyl substitution on the D ring
 Halogen substitution
 No side chain on C17
 Possibly a side chain on C21</td>
<td>Betamethasone
 Dexamethasone
 Dexamethasone acétate
 Diflucortolone valerate
 Flucortolone</td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>C16-methyl substitution
 Halogen substitution
 Side chain ester on C17
 Possibly a side chain on C21</td>
<td>Betamethasone dipropionate
 Betamethasone 17-valérate
 Clobetasol propionate
 Clobetasone butyrate
 Fluticasone propionate
 Mometasone furoate</td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td>No methyl substitution on C16
 No halogen substitution
 Side chain ester on C17
 Possibly a side chain on C21</td>
<td>Difluprednate
 Hydrocortisone aceponate
 Hydrocortisone 17-butyrate
 Methylprednisolone aceponate
 Prednicarbate</td>
<td>A
 Budesonide (S isomer)</td>
</tr>
</tbody>
</table>
Corticosteroids cross-reactivity

Sensitized patients often test positive to several CSs (85%):

– Concomitant reactions/subsequent sensitization
– Cross-reactions (also reactions to not locally available CSs)
 • Intra-group
 • Inter-group
 A and D2
 Budesonide and D2
Corticosteroid series
Molecular modelling and 3D-QSAR

Comparison between:

– molecular modelling and clustering of CSs (by electrostatic and steric fields)

– and patch-test results (with a series of 66 CSs in 315 previously sensitized subjects)
• Alignment on the common steroid skeleton.
• Optimization of the alignment by rotations of lateral side chains.
- Insertion of superposed molecules in a grid with probes and computerisation of steric/electrostatic fields

- Statistical analysis.
• All C_{21} and C_{17} CS esters were hydrolyzed

• Results are in accordance with clinical data

• Optimal cut: 3 clusters
Composition of the clusters:

– C-1: molecules mostly from group A and D2 without \(C_{16}\)-methyl substitution nor halogenation, and budesonide

– C-2: halogenated molecules of the acetonide group B

– C-3: halogenated molecules from group C and D1, \(C_{16}\)-methylated
- Correlation clinical data / dendrogram
- All patients positive to clusters 2, 3 also reacted to cluster 1, BUT the opposite was not the case

2 patient profiles:
- **Profile 1**: Cluster 1 (+) only
- **Profile 2**: Cluster (+) : 1 and 2
 Cluster (+) : 1 and 3
 Cluster (+) : 1, 2 and 3
2 patient subtypes

Profile 1: allergic to molecules of Group 1 only

Profile 2: possibly allergic to molecules of the 3 groups

3D-QSAR identified different areas of recognition
Respective contribution of electrostatic and steric fields

Profile 1:

– ELECTROSTATIC FIELDS or molecular charge important
– Reactions mainly to non-halogenated molecules, halogen substitution on C6 being protective
Patient profile 1 : 3D-QSAR

3D-QSAR study for profile 1 patients: electrostatic fields (blue and red) being predominant
Respective contribution of electrostatic and steric fields (2)

Profile 2:

– STERIC FIELDS or molecular structure important
– Common structural cycles (despite certain diversity)
– Possible reactions to any CS molecule
– Systematic, individualized evaluation of the sensitization/tolerance profile necessary
Patient profile 2 : 3D-QSAR

3D-QSAR study for profile 2 patients: steric fields (yellow and green) being predominant.
Reappraisal of the classification

<table>
<thead>
<tr>
<th>GROUPS</th>
<th>CHARACTERISTICS</th>
<th>MEMBERS</th>
</tr>
</thead>
</table>
| 1 (A, D2 and budesonide) | No C_16-methyl substitution
No halogen substitution in most cases | Cortisone acetate
Hydrocortisone
Hydrocortisone acetate
Methylprednisolone acetate
Prednisolone
Prednisone
Tixocortol pivalate
Hydrocortisone aceponate
Hydrocortisone 17-butyrate
Methylprednisolone aceponate
Budesonide
Triamcinolone |
| 2 (B) | $C_\text{16} / C_\text{17}$ Cis ketal or diol structure
Halogen substitution except* | Amcinonide
Desonide*
Triamcinolone acetonide
Halcinonide* |
| 3 (C, D1) | C_16-methyl substitution
Halogen substitution | Betamethasone
Dexamethasone
Dexamethasone acétate
Diflucortolone valerate
Flucortolone
Betamethasone dipropionate
Betamethasone 17-valérate
Clobetasol propionate
Clobetasone butyrate
Fluticasone propionate
Mometasone furoate |
Budesonide...a particular position

R and S isomers

– R = Cross-reactions with acetonides
– S = Cross-reactions with Group 1 (A and D2)
1. Diagnostic

2. Classification and cross-reactions

3. Practical guidelines
Practical guidelines

Confirmation of corticosteroid allergy
- European Standard Series (tixocortol pivalate, budesonide, HC-17 butyrate)
- Personal corticosteroids used

Determination of the patient profile
- Additional patch tests with groups 2 and 3 corticosteroid molecules
Corticosteroid series

- Fluocortin butyl
- Amcinonide
- Desonide
- Alclomethasone dipropionate
- Betamethasone dipropionate

- Triamcinolone diacetate
- Triamcinolone acetonide
- Fluocortolone pivalate
- Diflorasone diacetate
- Fluocortolone caproate ou 21-hexanoate

At least one +
Patient profile 2: possibly allergic to any CS
All molecules need to be tested

All tests -
Patient profile 1: allergic to group 1 only
OK groups 2 and 3

M. Baeck (Bruxelles)
Take home message

Corticosteroid allergy: think about it!

Testing with the specific corticosteroid used

Allergic reactions less frequent with C_{16}-methylated or halogenated CS molecules (Groups 2 and 3)

2 patients subtypes

– 1: Allergic to the non-methylated and/or non-halogenated molecules
– 2: possibly allergic to the entire spectrum of CSs
GERDA 2013
Lyon 25-28 septembre

www.gerda2013.com

Organisation scientifique :
Pr Jean-François NICOLAS

Comité d’organisation :
Pr Frédéric BERARD
Dr Audrey NOSBAUM
Dr Dominique VITAL-DURAND
Dr Amandine CATELAIN-LAMY
Dr Catherine DUPIN
Mme Hélène PASCUAL