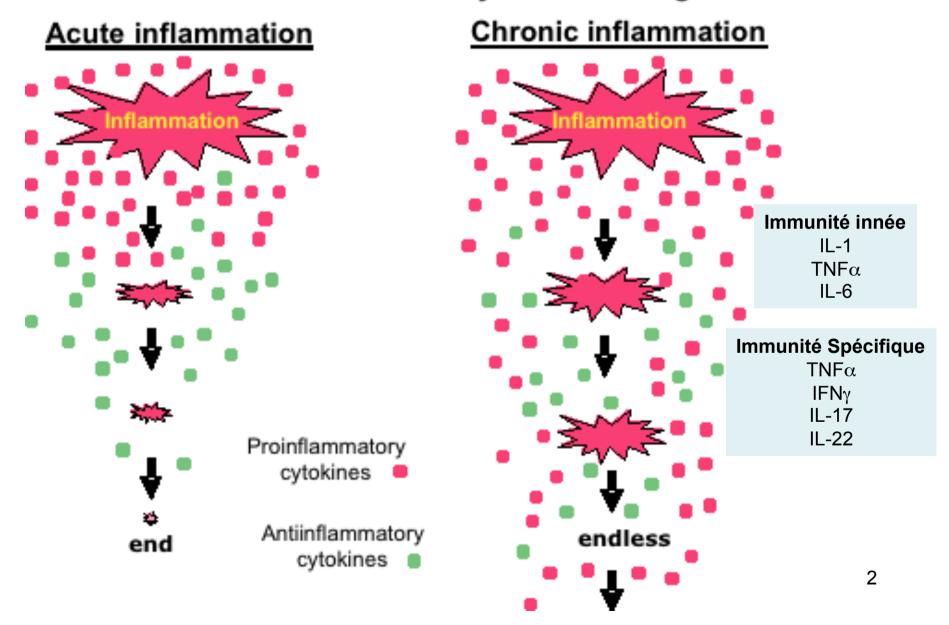
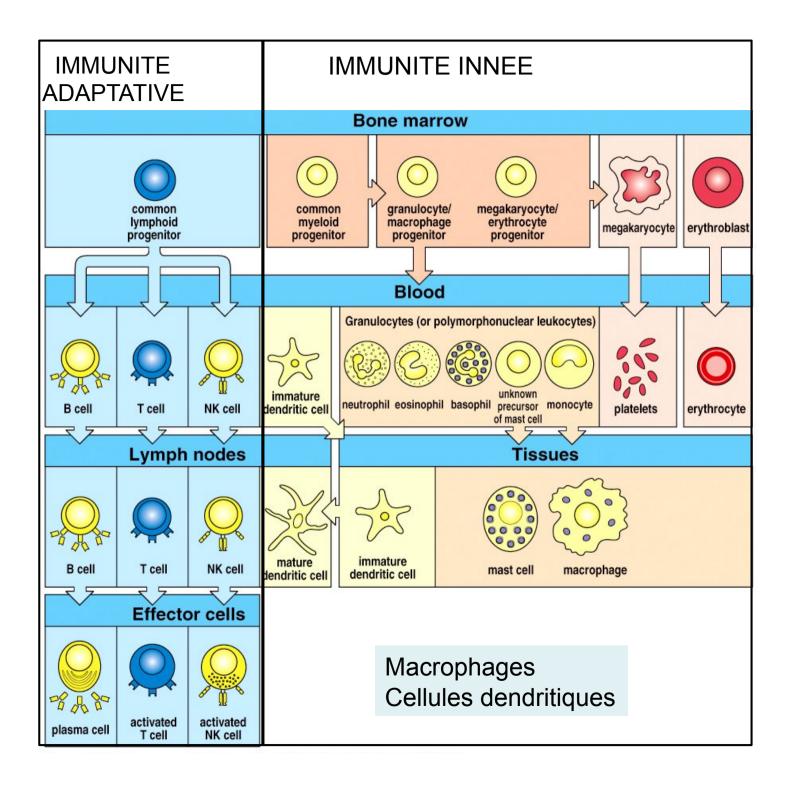
LES MALADIES INFLAMMATOIRES


Classification et physiopathologie


Jean-François NICOLAS, Frédéric BERARD

Université Lyon1, INSERM U 1111-CIRI, CHU Lyon-Sud

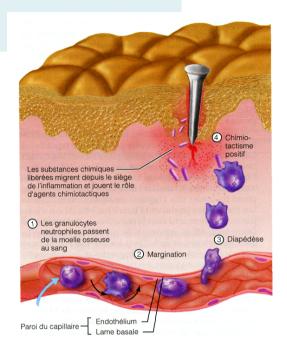
Inflammation aigüe versus inflammation chronique

Concentration of Cytokines during

PLAN

 Inflammation = mise en jeu de l'immunité innée et adaptative

Immunité adaptative: lymphocytes T et B Immunité innée: leucocytes et toutes les cellules de l'organisme


Inflammation physiologique

- Réponse immunitaire
- Réponse physiologique aux agressions
- Ex: cicatrisation; guérison d'une infection
- Inflammation pathologique: Maladies
 - autoinflammatoires
 - inflammatoires chroniques

Immunité innée

- autoimmunes
- allergiques

Immunité adaptative

Classification des hypersensibilités immunologiques

Maladies autoimmunes et allergiques

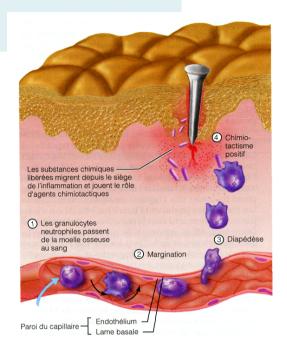
Type I	Type II IgG		Type III	Type IV			
IgE			IgG	CD4 Th1 CD4 Th2		CD4 Th17	CD8 cytotox.
Antigènes solubles	Ag cellulaires ou matriciels	Récepteur cellulaire	Ag solubles	Ag soluble	Ag soluble		Ag cellulaire
Mastocyte	Complément, Phagocytes, NK	Ac altère la signalisation	Complément, Phagocytes	Macrophage	Eosinophiles	Neutrophiles	Cytotoxicité
Ag	platelets complement	₽	blood vessel complement	chemokines, cytokines, cytotoxins	IL-4 IL-5 Cytotoxins, inflammatory mediators	IL-17 Neutrophil	© ctl.
Rhinite all. Asthme all. Anaphylaxie	Réaction transfus. Anémie hémolytique	Thyroidite Myasthénie	Maladie sérique Lupus érythémateux	(IDR tuberculine) Rejet de greffes Arthrite, Diabète	Asthme all. chr. Rhinite all. chr.	Dommages tissulaires	°Rejet de greffes °Diabète type I
Urticaire de contact	Pemphigus Pemphigoide	Urticaire chronique Pemphigus	Vascularites immunoall.	Psoriasis	Dermatite atopique	Polyarthrite rhumatoïde, Psoriasis, Maladie de Crohn, Infections	Eczéma all.de contact Vitiligo, Pelade
Choc anaphylactique	Cytopénies médicamenteuses		Vascularites	Toxidermies	DRESS		Lyell/SJS

PLAN

 Inflammation = mise en jeu de l'immunité innée et adaptative

Immunité adaptative: lymphocytes T et B Immunité innée: leucocytes et toutes les cellules de l'organisme

Inflammation physiologique


- Réponse immunitaire
- Réponse physiologique aux agressions
- Ex: cicatrisation; guérison d'une infection

Inflammation pathologique: Maladies

- autoinflammatoires
- inflammatoires chroniques

Immunité innée

autoimmunes | Immunitéallergiques | adaptative

Les macrophages et cellules dendritiques:

Cellules initiatrices de l'inflammation

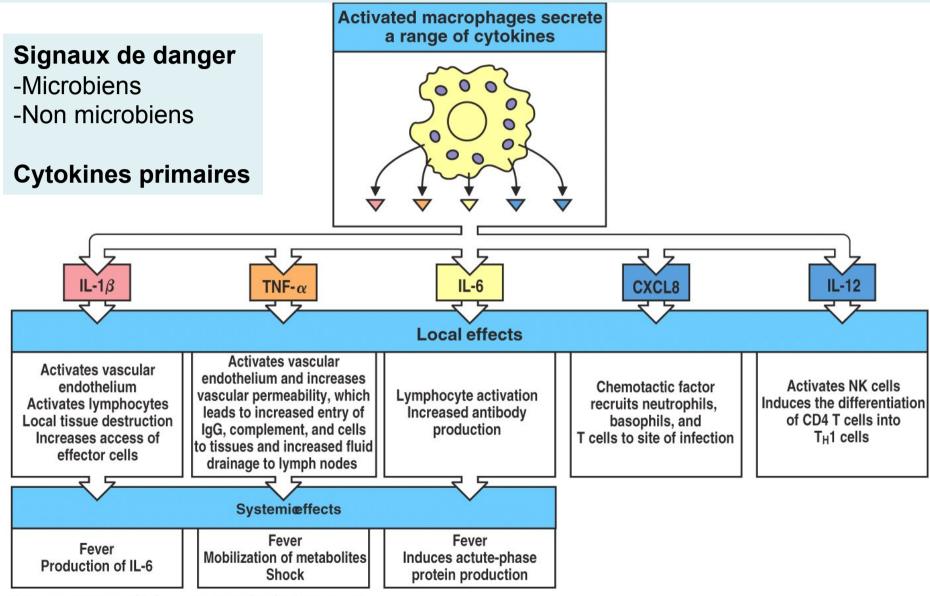
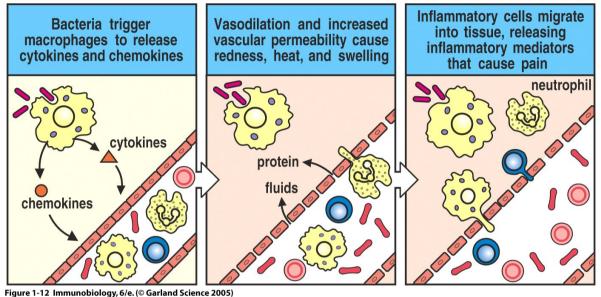



Figure 2-39 Immunobiology, 6/e. (© Garland Science 2005)

Signal de danger et IL-1:

Voies de signalisation de l'immunité innée

inflammatoires

Inflammasome LPS Inflammasome inducer (crystals, ATP, toxins) Voie des TLRs MyD88 MyD88 NLRP3 Cytokines NF-KB pro-caspaseinflammatoires NF-kB NF-KB DOC caspase-1 pro-IL-Cytokines

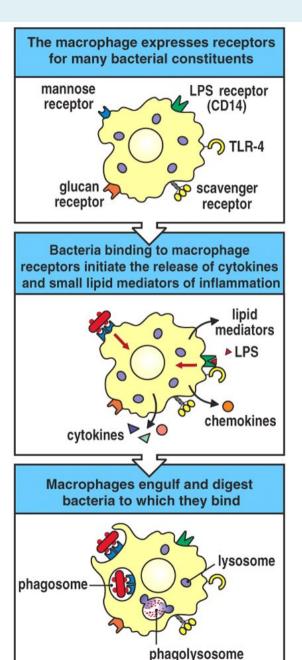
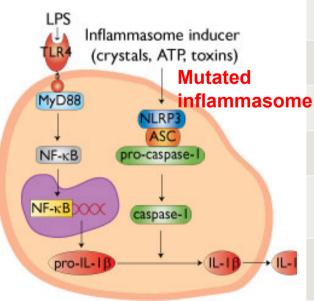
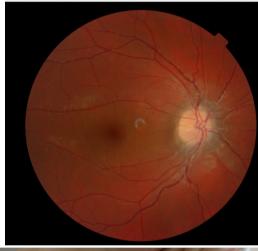



Figure 2-5 Immunobiology, 6/e. (© Garland Science 2005)

Maladies autoinflammatoires familiales

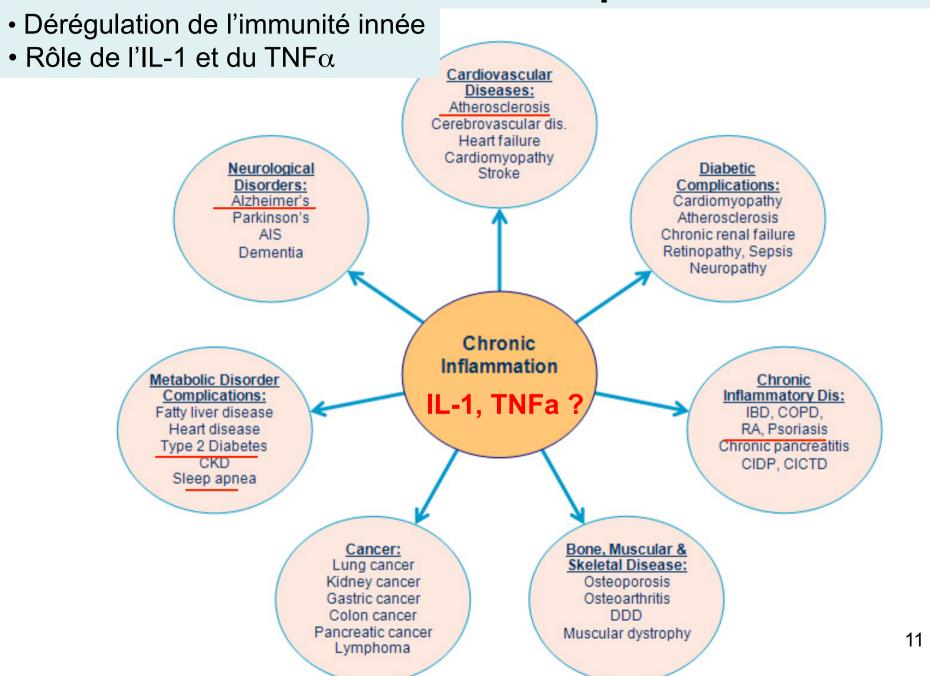
Hyperproduction d'IL-1

- Mutations des gènes impliqués dans les voies de signalisation de l'immunité innée
- Mutations « gain de fonction »
- Traitement: bloquer l'effet de l'IL-1 par anticorps ou par antagonistes du récepteur


	Disease*	Gene	Protein	Inheritance pattern	
	Familial Mediterranean fever (FMF)	MEFV	Pyrin	Autosomal recessive or gene-dosage-dependent autosomal dominant	
	Tumour necrosis factor-associated periodic syndrome (TRAPS)	TNFRSF1A	Tumour necrosis factor receptor 1	Autosomal dominant with dependence on the wild-type allele	
	Hyper IgD syndrome	MVK	Mevalonate kinase	Autosomal recessive	
	Cryopyrin-associated periodic syndromes (FCAS, MWS and NOMID)	NLRP3	NLRP3	Autosomal dominant	
	Blau syndrome‡	NOD2	NOD2	Autosomal dominant	
	PAPA syndrome	PSTPIP1	PSTPIP1	Autosomal dominant	
e	Deficiency of IL-1 receptor antagonist (DIRA)	IL1RN	IL-1 receptor antagonist	Autosomal recessive	
	Deficiency of IL-36 receptor antagonist (DITRA)	IL36RN	IL-36 receptor antagonist	Autosomal recessive	
	Familial psoriasis (PSORS2) and CARD14-mediated pustular psoriasis (CAMPS)	CARD14	Caspase-recruitment domain-containing protein 14	Autosomal dominant	
	CANDLE syndrome, Nakajo- Nishimura syndrome and JMP syndrome	PSMB8	PSMB8 immunoproteasome subunit	Autosomal recessive	

Maladies autoinflammatoires familiales

- Hyperproduction d'IL-1
- Maladies systémiques touchant différents organes



Maladies inflammatoires chroniques

Cristaux (Asbestos, alum, Cholesterol, silice, acide urique), Chimiques Toxines ATP MyD88 NF-KB pro-caspase-NF-KB XXX caspase-1 pro-IL-

Box 1 | Examples of conditions treated with IL-1 blockade

Joint, bone and muscle diseases*

- Rheumatoid arthritis; ankylosing spondylitis
- Erosive osteoarthritis of the hand
- · Recurrent multifocal osteomyelitis
- Traumatic knee injury; relapsing polychondritis

Hereditary systemic autoinflammatory diseases**

- Familial Mediterranean fever (FMF)
- Cryopyrin-associated periodic syndrome (CAPS)
- TNF receptor-associated periodic syndrome (TRAPS)
- Hyper-IgD syndrome (HIDS)
- Periodic fever, aphthous stomatitis, pharyngitis and adenitis (PFAPA)
- Deficiency of interleukin-1 (IL-1) receptor antagonist (DIRA)

Systemic inflammatory diseases*

- Systemic juvenile idiopathic arthritis
- Adult-onset Still's disease
- Schnitzler syndrome
- Behçet's disease
- PFAPA
- SAPHO (synovitis, acne, pustulosis, hyperostosis, osteitis) syndrome
- Macrophage activation syndrome

Common inflammatory diseases*

- Gout; pseudogout
- Type 2 diabetes
- Hidradenitis suppurativa
- Systolic heart failure; cardiac remodelling
- Dry eye syndrome
- Pustular psoriasis; neutrophilic dermatoses
- *See Supplementary information S1 (table) for a referenced and expanded list. *See TABLE 2.

Anti-IL-1 et diabète

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Interleukin-1–Receptor Antagonist in Type 2 Diabetes Mellitus

Claus M. Larsen, M.D., Mirjam Faulenbach, M.D., Allan Vaag, M.D., Ph.D., Aage Vølund, M.Sc., Jan A. Ehses, Ph.D., Burkhardt Seifert, Ph.D., Thomas Mandrup-Poulsen, M.D., Ph.D., and Marc Y. Donath, M.D.

ABSTRACT

BACKGROUND

The expression of interleukin-1–receptor antagonist is reduced in pancreatic islets of patients with type 2 diabetes mellitus, and high glucose concentrations induce the production of interleukin-1 β in human pancreatic beta cells, leading to impaired insulin secretion, decreased cell proliferation, and apoptosis.

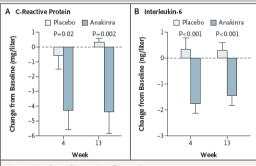


Figure 4. Markers of Systemic Inflammation.

The average absolute differences between baseline and 4 and 13 weeks in each study group are shown for levels of circulating C-reactive protein (Panel A) and interleukin-6 (Panel B). In the placebo group, the analysis included 35 patients at week 4 and 33 at week 13. In the anakinra group, the analysis included 34 patients at weeks 4 and 13. The I bars indicate standard errors.

The NEW ENGLAND JOURNAL of MEDICINE

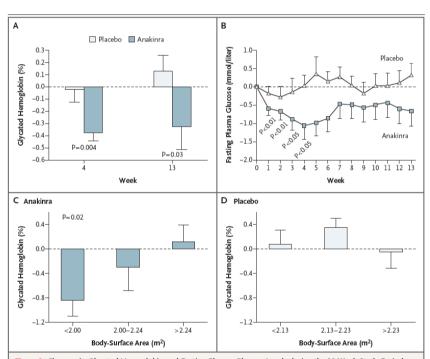


Figure 2. Changes in Glycated Hemoglobin and Fasting Plasma Glucose Levels during the 13-Week Study Period.

Panel A shows the average absolute difference in glycated hemoglobin levels between baseline and 4 and 13 weeks in each study group. Panel B shows the average absolute differences in fasting plasma glucose levels between the baseline value and weekly measurements performed by the patients at home during the 13-week study period. Panels C and D show the average absolute differences in glycated hemoglobin levels at 13 weeks in each study group stratified into thirds according to body-surface area. In the placebo group, the analysis included 35 patients at week 4, 34 at week 5, and 33 at week 13. In the anakinra group, the analysis included 34 patients at each weekly measure. The I bars indicate standard errors.

Maladies inflammatoires classification et physiopathologie

Maladie	Exemple	Immunité	Effecteurs	Physiopathologie	Classification
IMMUNITE SPECIFIQUE					
Allergiques	Asthme	Adaptative	Ac et	-Réponse immune	Gell &
	Eczéma		lymphocytes T	spécifique	Coombs
				- <u>Allergènes</u>	
Auto-immunes	Diabète I	Adaptative	Ac et	-Réponse immune	Gell &
	Thyroidites		lymphocytes T	spécifique	Coombs
	SEP			- <u>Auto-antigènes</u>	
IMMUNITE INNEE					
Auto-inflammatoires	FMF	Innée	Cytokines	-Maladies	?
	Muckle-Wells		IL-1	génétiques rares	
				-Mutations	
				<u>inflammasome</u>	
Inflammatoires	Psoriasis	Innée	Cytokines	-Maladies	3
chroniques	Diabète gras		IL-1	fréquentes	
	Athérosclérose		IL-17	-Dérégulation de	
	Alzheimer		TNF	l'immunité innée	
	Urticaire			- <u>Inflammasome</u> ?	
	chronique ?				

Allergologie et Immunologie Clinique – CHU Lyon-Sud

www.allergolyon.org

SEMINAIRE ALLERGOLYON 2015

Mercredi 21 au Samedi 24 janvier 2015 Ecole Normale Supérieure de Lyon

PROGRAMME

- Peau et Immunité (mercredi 21 janvier)
- Allergie aux médicaments (jeudi 22 janvier)
- Immuno-Dermatologie (vendredi 23 janvier)
- Best of Allergologie (samedi 24 janvier)

www.allergolyon.org

1

Service Allergologie et Immunologie Clinique Lyon-Sud

Unité de recherche clinique Lyon-Sud

Equipe 14 - INSERM U1111

